Abstract

The Weather Research and Forecasting–Community Multiscale Air Quality (WRF-CMAQ) model, implemented with anthropogenic chlorine (Cl) emissions, was evaluated against ground and NASA DC-8 aircraft measurements during the Korea-United States Air Quality (KORUS-AQ) 2016 campaign. The latest anthropogenic Cl emissions, including gaseous HCl and particulate chloride (pCl−) emissions from the Anthropogenic Chlorine Emissions Inventory of China (ACEIC-2014) (over China) and a global emissions inventory (Zhang et al., 2022) (over outer China), were used to examine the impacts of Cl emissions and the role of nitryl chloride (ClNO2) chemistry in N2O5 heterogeneous reactions on secondary nitrate (NO3−) formation across the Korean Peninsula. The model results against aircraft measurements clearly showed significant Cl- underestimations due mainly to the high gas-particle (G/P) partitioning ratios at aircraft measurement altitudes such as 700–850 hPa, but the ClNO2 simulations were reasonable. Several simulations of CMAQ-based sensitivity experiments against ground measurements indicated that although addition of Cl emission did not significantly alter NO3− formation, the activated ClNO2 chemistry with Cl emissions showed the best model performance with the reduced normalized mean bias (NMB) of 18.7 % compared to a value of 21.1 % for the Cl emissions-free case. In our model evaluation, ClNO2 accumulated during the night but quickly produced Cl radical due to ClNO2 photolysis at sunrise, which modulated other oxidation radicals (e.g., ozone [O3] and hydrogen oxide radicals [HOx]) in the early morning. In the morning hours (0800–1000 LST), the HOx were the dominant oxidants, contributing 86.6 % of the total oxidation capacity (sum of major oxidants such as O3 and HOx species), while oxidability was enhanced by up to ∼6.4 % (increase in 1 h HOx average of 2.89 × 106 molecules·cm−3) in the early morning mainly due to the changes in OH (+7.2 %), hydroperoxyl radical (HO2)(+10.0 %), and O3 (+4.2 %) over the Seoul Metropolitan Area, during the KORUS-AQ campaign. Our results improve understanding of the atmospheric changes in the PM2.5 formation pathway caused by ClNO2 chemistry and Cl emissions over northeast Asia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.