Abstract
In this study, the model compound esculetin that has functional groups typical for natural organic matter (NOM) was used to ascertain the nature of the characteristic bands in the differential UV–visible absorbance spectra (DAS) associated with the formation of metal-NOM complexes. The binding of ten different metal ions (Cu(II), Ni(II), Co(II), Fe(III), Cr(III), Al(III), Zn(II), Ca(II), Mg(II) and Pb(II)) with esculetin generate four bands in the DAS. These bands are similar to those present in the DAS of metal-NOM complexes. The UV–visible absorbance spectra of the metal-esculetin systems were calculated using time-dependent density functional theory (TD-DFT). The TD-DFT results demonstrate that the prominent features of the DAS of esculetin are primarily associated with the electron transitions between the molecular orbitals near the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the metal-esculetin complex. Charge decomposition analysis (CDA) results demonstrated that these electron transitions originate from the esculetin fragment to the Zn(II) fragment in the complex. Covalent indexes [(χm)2rc] of the metal ions were found to be correlated with the metal-specific features of the DAS of metal-esculetin systems. The strength of the linear correlations between the quantitative parameters of the electron density of the bond critical points (BCP) is indicative of the strength of the metal-esculetin interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.