Abstract

The variations of the 119Sn Mossbauer isomer shift δ are interpreted for tin compounds from a semi-empirical tight-binding calculation of the electronic density at the nucleus ρ(0). A molecular model is proposed in order to relate the variations of ρ(0) for the Sn(IV) chalcogenides to the changes in the Sn environment. The variations of the experimental values of the quadrupole splitting δ are linearly correlated to the values of the electric field gradients (EFG) calculated by the full-potential linearized-augmented-plane-wave (FP-LAPW) method. The value of the 119Sn nuclear quadrupole moment is found to be |Q| = 10.5 ± 0.2 fm2. Finally, the relation between the EFG and the Sn environment is discussed for SnO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call