Abstract

The present paper deals with the theoretical investigation of temperature-dependent resistivity of the perovskite manganites La0.78Pb0.22MnO3-δ within the framework of the classical electron–phonon model of resistivity, i.e., the Bloch–Gruneisen model. Due to inherent acoustic (low-frequency) phonons (ωac) as well as high-frequency optical phonons (ωop), the contributions to the electron–phonon resistivity have first been estimated. At low temperatures the acoustic phonons of the oxygen-breathing mode yield a relatively larger contribution to the resistivity as compared to the contribution of optical phonons. Furthermore, the nature of phonons changes around T = 215 K exhibiting a crossover from an acoustic to optical phonon regime with elevated temperature. The contribution to resistivity estimated by considering both phonons, i.e., ωac and ωop, when subtracted from experimental data, infers a T4.5 temperature dependence over most of the temperature range. Deduced T4.5 temperature dependence of ρdiff = [ρexp − {ρ0 + ρe-ph( = ρac + ρop)}] is justified in terms of electron–magnon scattering within the double exchange (DE) process. Within the proposed scheme, the present numerical analysis of temperature dependent resistivity shows similar results as those revealed by experiments

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.