Abstract

A method is presented for the interpretation of receptor docking score values (rough measures of binding affinities) of ligands in terms of 3D molecular field interaction contributions. The FlexX and FlexX-Pharm methods were used to dock the structures of designed sets of ligands into the ligand-binding pocket of a selected receptor. In the next step the relationship was investigated between the FlexX and CScore scores and 3D molecular fields obtained for the docked conformations of the ligands, using the CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis) methods. The approach yielded highly significant CoMFA and CoMSIA models demonstrating that a high portion of the variance in the docking score values of the ligands can be explained by steric, electrostatic, hydrophobic, and hydrogen bond donor and acceptor molecular field interaction contributions. The approach was exemplified by using the crystal structure of the ligand-binding domain of the ecdysone receptor (EcR) of the moth Heliotis virescens as well as virtual molecule libraries of analogues of known diacyl-hydrazine (DAH) type ecdysteroid agonists. By docking appropriately designed virtual compound libraries into the DAH binding pocket of EcR followed by CoMFA and CoMSIA of the docked conformations, hitherto unexplored regions of the receptor cavity could be mapped. By mapping the significant molecular field interaction contributions onto the model of the receptor-ligand complex, important receptor-ligand interactions could be highlighted that may help the design of novel highly scored receptor ligands. An advantage of the method is that no experimental biological activity data are required to exhaustively map the receptor-binding site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.