Abstract

ABSTRACTThe lead isotope compositions of 61 galenas from central and southern Scotland vary markedly between different regions. Most galenas from the southern Grampian Highlands yield isotope ratios (206Pb/204Pb 17·77 ± 0·25, 207Pb/204Pb 15·47 ± 0·05, 208Pb/204Pb 37·63 ± 0·26) less radiogenic than those from Midland Valley galenas (18·22 ± 0·12, 15·55 ± 0·05, 38·13 ± 0·14) whilst galena lead from the Southern Uplands (18·28 ± 0·12, 15·56 ± 0·03, 38·21 ± 0·18) is more radiogenic than that from the southern Midland Valley (18·12 ± 0·06, 15·52 ± 0·02, 38·06 ±0·10). The change in isotopie composition across the Highland Boundary fault reflects the presence or absence of Dalradian rocks which included a magmatic component of lead. Galenas from the Dalradian sequence in Islay, where igneous rocks are lacking, have a composition (18·14±0·04, 15·51±0·01, 37·90±0·02) more like Midland Valley galenas. In the Southern Uplands, galenas yield lead isotope ratios similar to those of feldspars from Caledonian granite (18·30 ± 0·14, 15·57 ± 0·04, 37·96 ± 0·15) analysed by Blaxland et al. (1979). The similar ratios reflect the incorporation of Lower Palaeozoic sedimentary rocks into the granite magma, rather than a granitic source for the mineralisation. The granites were then thermal-structural foci for later mineralising fluids which leached metals from the surrounding rocks. Within the Midland Valley, galenas hosted in Lower Devonian-Lower Carboniferous lavas are notably more radiogenic (18·31 ±0·12, 15·58 ± 0·06, 38·20 ± 0·16) than sediment-hosted galenas (18·14 ± 0·07, 15·52 ± 0·02, 38·08 ± 0·10). The Devonian lavas at least may have inherited lead from subducted (? Lower Palaeozoic) rock incorporated in the primary magma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call