Abstract

Self-consistent field calculations are reported on (planar and perpendicular geometric conformers of) the lowest energy triplet and singlet (π, π*) orbital configurations of ethylene, which are usually identified with the spectroscopic T and V states, respectively. For the planar conformation the calculation predicts a V state with the characteristics of a Rydberg state, but a T state of expected valence-shell character. The π* orbital is much too large and the internuclear distance too small for the calculated V state, but are as expected for the T state. It is concluded that the calculated result for the supposed V state in the planar conformation is spurious due to the inadequacy of the Hartree–Fock single-configuration theory. The supposed V state here calculated may be identified with a Rydberg state which has been observed spectroscopically at ∼ 1.4 eV higher energy than the V state in the optical spectrum. For the perpendicular conformation, the calculations yield resonable results for both the T and V states. Calculations also have been carried out on a singlet (σ, π*) state for planar ethylene; here the size of the π* orbital is reasonable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.