Abstract

A product decomposition of a nondepolarizing Mueller matrix consisting of the sequence of three factors--a first linear retarder, a horizontal or vertical "retarding diattenuator," and a second linear retarder--is proposed. Each matrix factor can be readily identified with one or two basic polarization devices such as partial polarizers and retardation waveplates. The decomposition allows for a straightforward interpretation and parameterization of an experimentally determined Mueller matrix in terms of an arrangement of polarization devices and their characteristic parameters: diattenuations, retardances, and axis azimuths. Its application is illustrated on an experimentally determined Mueller matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call