Abstract
Interpreting neural network classifiers using gradient-based saliency maps has been extensively studied in the deep learning literature. While the existing algorithms manage to achieve satisfactory performance in application to standard image recognition datasets, recent works demonstrate the vulnerability of widely-used gradient-based interpretation schemes to norm-bounded perturbations adversarially designed for every individual input sample. However, such adversarial perturbations are commonly designed using the knowledge of an input sample, and hence perform sub-optimally in application to an unknown or constantly changing data point. In this paper, we show the existence of a Universal Perturbation for Interpretation (UPI) for standard image datasets, which can alter a gradient-based feature map of neural networks over a significant fraction of test samples. To design such a UPI, we propose a gradient-based optimization method as well as a principal component analysis (PCA)-based approach to compute a UPI which can effectively alter a neural network’s gradient-based interpretation on different samples. We support the proposed UPI approaches by presenting several numerical results of their successful applications to standard image datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.