Abstract

Conventional methods of estimating pressure coefficients of buildings retain time and cost constraints. Recently, machine learning (ML) has been successfully established to predict wind pressure coefficients. However, regardless of the accuracy, ML models are incompetent in providing end-users’ confidence as a result of the black-box nature of predictions. In this study, we employed tree-based regression models (Decision Tree, XGBoost, Extra-tree, LightGBM) to predict surface-averaged mean pressure coefficient (Cp,mean), fluctuation pressure coefficient (Cp,rms), and peak pressure coefficient (Cp,peak) of low-rise gable-roofed buildings. The accuracy of models was verified using Tokyo Polytechnic University (TPU) wind tunnel data. Subsequently, we used Shapley Additive Explanations (SHAP) to explain the black-box nature of the ML predictions. The comparison revealed that tree-based models are efficient and accurate in wind-predicting pressure coefficients. Interestingly, SHAP provided human-comprehensible explanations for the interaction of variables, the importance of features towards the outcome, and the underlying reasoning behind the predictions. Moreover, SHAP confirmed that tree-based predictions adhere to the flow physics of wind engineering, advancing the fidelity of ML-based predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call