Abstract
Electrostatic self-potentials of individual particles trapped at an oil–water interface were determined, and the effects of surface chemical nonuniformity on heterogeneous self-potentials and equilibrium microstructures were investigated. Direct measurement of the pair interactions and the self-potentials of polystyrene microspheres were performed using optical laser tweezers. The individual particles had different self-potentials even when they possessed the same surface functionalities. Atomic force microscopy measurements elucidated the relationship between nonuniform surface charge distribution and heterogeneity and magnitude of self-potentials. Monte Carlo simulations demonstrated that self-potential heterogeneity led to the formation of more melted microstructures that showed excellent consistency with experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.