Abstract

Computer-aided detection and diagnosis in ECG signals for heart diseases are gaining increasing attention. However, developing and selecting the highly performing diagnostic model suitable for clinical implications is still challenging. In this paper, we proposed a combined network of convolutional neural network (CNN) and Recurrent Neural Network (RNN), designed for the classification of ECG heart signals for diagnostic purpose. The proposed network consists of 2 convolutional layers with 5 × 5 kernels and ReLU activations, followed by 4 residual blocks, 2 bidirectional long short-term memory (biLSTM) layers, as well as 2 fully connected layers. Each residual block involved the structure of a Squeeze-and-Excitation Network (SENet) with lightweight property to recalibrate the feature map of the network. The last dense layer has 5 outputs, equivalent to the classes considered: non-ectopic beats, supraventricular ectopic beats, ventricular ectopic beats, fusion beats, and unknown beats. To train and evaluate the combined CNN and RNN, we transferred the knowledge acquired on beat classification tasks in 2017 PhysioNet/CinC Challenge to that in PhysionNet's MIT-BIH dataset. The developed network achieved a recognition sensitivity of 95.90%, accuracy = 95.90% and specificity = 96.34% with classification time of single sample = 6.23 s in detecting 5 ECG classes. A comparative analysis proved the high performance of the proposed combined CNN and RNN against previous methods, demonstrating the potential of our proposed network in the analysis of beat patterns. The proposed model can be applied in cloud computing or implemented in mobile devices to evaluate cardiac health with the highest precision.

Highlights

  • IntroductionECG uses external electrodes to measure the electrical conduction signals of the heart and record them as characteristic lines

  • Electrocardiogram (ECG) is the most widely used diagnostic tool in cardiology [1]

  • Classification of ECG signals plays an important role in diagnoses of heart diseases

Read more

Summary

Introduction

ECG uses external electrodes to measure the electrical conduction signals of the heart and record them as characteristic lines. These lines allow the axis, rate, and rhythm, as well as the amplitudes of specific parts of the heart (e.g., the P wave, PR interval, QRS complex, ST segment) to be examined. Understanding and interpreting the ECG recordings are crucial to increase the accuracy of diagnosis and introduce timely management to patients with abnormal heart rhythms, heart attack, and enlarged hearts [2], [3]. Developing the most appropriate classifier that is capable of classifying arrhythmia in real-time becomes a critical issue in ECG arrhythmia classification.

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.