Abstract
Infrared crown radiation temperatures as observed over a dense Douglas fir forest are analyzed in the context of similarity theory and the concept of transport resistances. As such we obtain a rather high value of the roughness length for heat, which is about equal to the roughness length for momentum. This value can be explained by the more efficient transport of heat relative to momentum in the roughness sublayer of the forest. Correcting for this effect we arrive at the classic value for homogeneous terrain of about 0.1 times the roughness length for momentum. For unstable cases the presence of enhanced mixing of heat in the roughness sublayer leads to a modified integral stability function for the dimensionless potential temperature difference between the surface and the top of the roughness sublayer. The observations give some evidence for this different stability behaviour. The analysis suggests that during daytime the radiative surface temperature and the aerodynamic surface temperature are not significantly different when used to estimate fluxes. Daytime trunk space air temperature is satisfactory parameterized with the concept of gusts and with surface renewal analysis. As such it is related to the sensible heat flux and the storage heat flux. Night time radiation temperatures at times strongly deviate from the expected behaviour based on similarity theory and the roughness length for heat, suggesting that the concept of a single surface temperature is too simple for such cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.