Abstract

Significant advances have been made in recent years in research, development, interpretation, and application of cone penetration testing. The addition of pore pressure measurements during cone penetration testing has added a new dimension to the interpretation of geotechnical parameters.The cone penetration test induces complex changes in stresses and strains around the cone tip. No one has yet developed a comprehensive theoretical solution to this problem. Hence, the cone penetration test provides indices which can be correlated to soil behaviour. Therefore, the interpretation of cone penetration data is made with empirical correlations to obtain required geotechnical parameters.This paper discusses the significant recent developments in cone penetration testing and presents a summarized work guide for practicing engineers for interpretation for soil classification, and parameters for drained conditions during the test such as relative density, drained shear strength, and deformation characteristics of sand. Factors that influence the interpretation are discussed and guidelines provided. The companion paper, Part II: Clay, considers undrained conditions during the test and summarizes recent developments to interpret parameters for clay soils, such as undrained shear strength, deformation characteristics of clay, stress history, consolidation characteristics, permeability, and pore pressure. The advantages and use of the piezometer cone are discussed as a separate topic in Part II: Clay. The authors' personal experiences and current recommendations are included. Keywords: static cone penetration testing, in situ, interpretation, shear strength, modulus, density, stress history, pore pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call