Abstract

The local wind-driven circulation off southern San Diego is addressed with two complementary statistical and dynamical frameworks based on observations and idealized numerical model simulations. The observations including surface currents from high-frequency radars, subsurface currents from a nearshore mooring, and wind records at a local wind station are analyzed with the idealized ocean model (MITgcm) simulations using realistic bottom topography and spatially uniform wind stress forcing. Statistically estimated anisotropic local wind transfer functions characterize the observed oceanic spectral response to wind stress separately in the x (east-west) and y (north-south) directions. We delineate the coastal circulation at three primary frequencies [low (σ L=0.0767 cycles per day (cpd)), diurnal (σ D=1 cpd), and inertial (σ f=1.07 cpd) frequencies] with the momentum budget equations and transfer functions. At low frequency, the magnitudes of transfer functions are enhanced near the coast, attributed to geostrophic balance between wind-driven pressure gradients and the Coriolis force on currents. The response diminishes away from the coast, returning to the balance between frictional and Coriolis terms, as in the classic Ekman model. On the contrary, transfer functions in the near-inertial frequency band show reduced magnitudes near the coast primarily due to friction, but exhibits the enhanced seaward response as a result of the inertial resonance. The idealized model simulations forced by local wind stress can identify the influences of remote wind stress and the biases in the data-derived transfer functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.