Abstract
In pain research and clinics, it is common practice to subgroup subjects according to shared pain characteristics. This is often achieved by computer-aided clustering. In response to a recent EU recommendation that computer-aided decision making should be transparent, we propose an approach that uses machine learning to provide (1) an understandable interpretation of a cluster structure to (2) enable a transparent decision process about why a person concerned is placed in a particular cluster. Comprehensibility was achieved by transforming the interpretation problem into a classification problem: A sub-symbolic algorithm was used to estimate the importance of each pain measure for cluster assignment, followed by an item categorization technique to select the relevant variables. Subsequently, a symbolic algorithm as explainable artificial intelligence (XAI) provided understandable rules of cluster assignment. The approach was tested using 100-fold cross-validation. The importance of the variables of the data set (6 pain-related characteristics of 82 healthy subjects) changed with the clustering scenarios. The highest median accuracy was achieved by sub-symbolic classifiers. A generalized post-hoc interpretation of clustering strategies of the model led to a loss of median accuracy. XAI models were able to interpret the cluster structure almost as correctly, but with a slight loss of accuracy. Assessing the variables importance in clustering is important for understanding any cluster structure. XAI models are able to provide a human-understandable interpretation of the cluster structure. Model selection must be adapted individually to the clustering problem. The advantage of comprehensibility comes at an expense of accuracy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.