Abstract

Biomolecular nuclear magnetic resonance (NMR) spin relaxation experiments provide exquisite information on the picosecond to nanosecond timescale motions of bond vectors. Spin-lattice (T1) and spin-spin (T2) relaxation times and the steady-state nuclear Overhauser effect (NOE) are the first set of parameters extracted from typical 15N or 13C NMR relaxation experiments. Therefore, verifying that T1, T2, and NOE are consistent with theoretical predictions is an important step before carrying out the more detailed model-free and reduced spectral density mapping analyses commonly employed. In this mini-review, we discuss the essential motional parameters used to describe biomolecular dynamics in the context of a variety of examples of folded and intrinsically disordered proteins and peptides in aqueous and membrane mimetic environments. Estimates of these parameters can be used as input for an online interface, introduced herein, allowing plotting of trends of T1, T2, and NOE with magnetic field strength. The plots may serve as a first-check to the spectroscopist preparing to embark on a detailed NMR relaxation analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call