Abstract

We investigate the effects of changes in rock and fluid properties on amplitude-variation-with-offset (AVO) responses. In the slope-intercept domain, reflections from wet sands and shales fall on or near a trend that we call the fluid line. Reflections from the top of sands containing gas or light hydrocarbons fall on a trend approximately parallel to the fluid line; reflections from the base of gas sands fall on a parallel trend on the opposing side of the fluid line. The polarity standard of the seismic data dictates whether these reflections from the top of hydrocarbon-bearing sands are below or above the fluid line. Typically, rock properties of sands and shales differ, and therefore reflections from sand/shale interfaces are also displaced from the fluid line. The distance of these trends from the fluid line depends upon the contrast of the ratio of P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]. This ratio is a function of pore-fluid compressibility and implies that distance from the fluid line increases with increasing compressibility. Reflections from wet sands are closer to the fluid line than hydrocarbon-related reflections. Porosity changes affect acoustic impedance but do not significantly impact the [Formula: see text] contrast. As a result, porosity changes move the AVO response along trends approximately parallel to the fluid line. These observations are useful for interpreting AVO anomalies in terms of fluids, lithology, and porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call