Abstract

Airborne geophysical (aeromagnetic and gravity) data of Nsukka area was interpreted qualitatively and quantitatively with the aim of determining the susceptibilities of rock types, depth/mass of the anomalous bodies, possible cause of the anomalies and type of mineralization prevalent in the area. The estimated depths from forward and inverse modeling of aeromagnetic data for profiles 1, 2, 3, 4 and 5 were 1200m, 1644m, 1972m, 2193m and 2285m respectively. The respective susceptibility values were 0.0031, 0.0073, 1.4493, 0.0069 and 0.0016. These indicate dominance of iron rich minerals like limonite, hematite, pyrrhotite, and pyrite and forms lateritic caps on sandstones. SPI depth result ranges from 151.6m minimum (shallow magnetic bodies) to 3082.7 m maximum (deep lying magnetic bodies). Euler depths for the four different structural index (SI = 0.5, 1, 2, 3) ranges from 7.99 to 128.93m which are depths of shallow magnetic sources resulting from lateritic bodies in the outcrops in the study area. From the gravity data interpretation, Euler depth estimation reveals that depth to anomalous bodies ranges from 89.13 to 2296.92m. Density of the causative body obtained from modeling results for profile 1 was 1498kg/m3, which is in the range of clay material and the depth was about 923m. From models 2, 4 and 5, the densities of the causative bodies were 3523, 4127 and 3707kg/m3, while depths to the surface were about 604, 815 and 1893m respectively. These density ranges correspond to that of ironstone. From model three, the density of causative body obtained was 2508kg/m3, located at a depth of about 268m below the surface. This work has shown that Nsukka area is underlain by thick strata of shales, sandstones and ironstones, which together are suitable for ceramic production, and sufficiently thick sediments suitable for hydrocarbon accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call