Abstract

A series of Cu(In,Ga)Se2 (CIGS) thin film solar cells with differently prepared heterojunctions has been investigated by admittance spectroscopy, capacitance-voltage (CV) profiling, and temperature dependent current-voltage (IVT) measurements. The devices with different CdS buffer layer thicknesses, with an In2S3 buffer or with a Schottky barrier junction, all show the characteristic admittance step at shallow energies between 40 and 160 meV, which has often been referred to as the N1 defect. No correlation between the buffer layer thickness and the capacitance step is found. IVT measurements show that the dielectric relaxation frequency of charge carriers in the CdS layers is smaller than the N1-resonance frequency at low temperatures where the N1 step in admittance is observed. These results strongly contradict the common assignment of the N1 response to a donor defect at or close to the heterointerface. In contrast, an explanation for the N1 response is proposed, which relates the admittance step to a non-Ohmic back-contact acting as a second junction in the device. The model, which is substantiated with numerical device simulations, allows a unified explanation of characteristic admittance, CV, and IVT features commonly observed in CIGS solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.