Abstract

With a given Edgeworth expansion sequences of i.i.d. r.v.'s are associated such that the Edgeworth expansion for the standardized sum of these r.v.'s agrees with the given Edgeworth expansion. This facilitates interpretation and manipulation of Edgeworth expansions. The theory is applied to the power of linear rank statistics and to the combination of such statistics based on subsamples. Complicated expressions for the power become more transparent. As a consequence of the sum-structure it is seen why splitting the sample causes no loss of first order efficiency and only a small loss of second order efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.