Abstract
3D decision-critical tasks urgently require research on explanations to ensure system reliability and transparency. Extensive explanatory research has been conducted on 2D images, but there is a lack in the 3D field. Furthermore, the existing explanations for 3D models are post-hoc and can be misleading, as they separate explanations from the original model. To address these issues, we propose an ad-hoc interpretable classifier for 3D point clouds (i.e., Interpretable3D). As an intuitive case-based classifier, Interpretable3D can provide reliable ad-hoc explanations without any embarrassing nuances. It allows users to understand how queries are embedded within past observations in prototype sets. Interpretable3D has two iterative training steps: 1) updating one prototype with the mean of the embeddings within the same sub-class in Prototype Estimation, and 2) penalizing or rewarding the estimated prototypes in Prototype Optimization. The mean of embeddings has a clear statistical meaning, i.e., class sub-centers. Moreover, we update prototypes with their most similar observations in the last few epochs. Finally, Interpretable3D classifies new samples according to prototypes. We evaluate the performance of Interpretable3D on four popular point cloud models: DGCNN, PointNet2, PointMLP, and PointNeXt. Our Interpretable3D demonstrates comparable or superior performance compared to softmax-based black-box models in the tasks of 3D shape classification and part segmentation. Our code is released at: github.com/FengZicai/Interpretable3D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.