Abstract
This research paper introduces an innovative approach for explainable one-class time-series classification (XOCTSC). The proposed method involves generating pseudounseen synthetic signals by altering the amplitude and cycle of the original signals. Subsequently, a classification process is performed to distinguish between the original and synthetic signals, and the resulting model is applied to testing data. Instances classified as synthetic classes are treated as unseen classes, and the dissimilarity with the training data can be elucidated through an explanation of the synthetic class creation process. This approach aims to enhance the interpretability of one-class time-series classification models by providing insights into the reasoning behind their decisions. The proposed method is demonstrated with a ballistocardiogram (BCG) signal for the breathing dataset and an electroencephalogram (EEG) signal for the epilepsy dataset. The proposed method recognizes BCG amplitude reduction during breath holding. Moreover, EEG cycle changes during epileptic seizures are observed across multiple channels. These observations align with actual epilepsy symptoms and breathing behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.