Abstract
Deep learning systems, especially in critical fields like medicine, suffer from a significant drawback, their black box nature, which lacks mechanisms for explaining or interpreting their decisions. In this regard, our research aims to evaluate the use of surrogate models for interpreting convolutional neural network (CNN) decisions in glaucoma diagnosis. Our approach is novel in that we approximate the original model with an interpretable one and also change the input features, replacing pixels with tabular geometric features of the optic disc, cup, and neuroretinal rim. We trained CNNs with two types of images: original images of the optic nerve head and simplified images showing only the disc and cup contours on a uniform background. Decision trees were used as surrogate models due to their simplicity and visualization properties, while saliency maps were calculated for some images for comparison. The experiments carried out with 1271 images of healthy subjects and 721 images of glaucomatous eyes demonstrate that decision trees can closely approximate the predictions of neural networks trained on simplified contour images, with R-squared values near 0.9 for VGG19, Resnet50, InceptionV3 and Xception architectures. Saliency maps proved difficult to interpret and showed inconsistent results across architectures, in contrast to the decision trees. Additionally, some decision trees trained as surrogate models outperformed a decision tree trained on the actual outcomes without surrogation. Decision trees may be a more interpretable alternative to saliency methods. Moreover, the fact that we matched the performance of a decision tree without surrogation to that obtained by decision trees using knowledge distillation from neural networks is a great advantage since decision trees are inherently interpretable. Therefore, based on our findings, we think this approach would be the most recommendable choice for specialists as a diagnostic tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.