Abstract

The elevated mortality and hospitalization rates among hemodialysis (HD) patients underscore the necessity for the development of accurate predictive tools. This study developed two models for predicting all-cause mortality and time to death-one using a comprehensive database and another simpler model based on demographic and clinical data without laboratory tests. A retrospective cohort study was conducted from January 2017 to June 2023. Two models were created: Model A with 85 variables and Model B with 22 variables. We assessed the models using random forest (RF), support vector machine, and logistic regression, comparing their performance via the AU-ROC. The RF regression model was used to predict time to death. To identify the most relevant factors for prediction, the Shapley value method was used. Among 359 HD patients, the RF model provided the most reliable prediction. The optimized Model A showed an AU-ROC of 0.86 ± 0.07, a sensitivity of 0.86, and a specificity of 0.75 for predicting all-cause mortality. It also had an R2 of 0.59 for predicting time to death. The optimized Model B had an AU-ROC of 0.80 ± 0.06, a sensitivity of 0.81, and a specificity of 0.70 for predicting all-cause mortality. In addition, it had an R2 of 0.81 for predicting time to death. Two new interpretable clinical tools have been proposed to predict all-cause mortality and time to death in HD patients using machine learning models. The minimal and readily accessible data on which Model B is based makes it a valuable tool for integrating into clinical decision-making processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.