Abstract

The interpretability of machine learning reveals associations between input features and predicted physical properties in models, which are essential for discovering new materials. However, previous works were mainly devoted to algorithm improvement, while the essential multi-scale characteristics are not well addressed. This paper introduces distortion modes of oxygen octahedrons as cross-scale structural features to bridge chemical compositions and material properties. Combining model-agnostic interpretation methods, we are able to achieve interpretability even using simple machine learning schemes and develop a predictive model of effective mass for a widely used material type, namely perovskite oxides. With this framework, we reach the interpretability of the model, understanding the trend of the effective mass without any prior background information. Moreover, we obtained the knowledge only available to experts, i.e., the interpretation of effective mass from the s–p orbitals hybridization of B-site cations and O2− in ABO3 perovskite oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.