Abstract

In recent years, machine learning methods have become increasingly popular prediction methods in psychology. At the same time, psychological researchers are typically not only interested in making predictions about the dependent variable, but also in learning which predictor variables are relevant, how they influence the dependent variable, and which predictors interact with each other. However, most machine learning methods are not directly interpretable. Interpretation techniques that support researchers in describing how the machine learning technique came to its prediction may be a means to this end. We present a variety of interpretation techniques and illustrate the opportunities they provide for interpreting the results of two widely used black box machine learning methods that serve as our examples: random forests and neural networks. At the same time, we illustrate potential pitfalls and risks of misinterpretation that may occur in certain data settings. We show in which way correlated predictors impact interpretations with regard to the relevance or shape of predictor effects and in which situations interaction effects may or may not be detected. We use simulated didactic examples throughout the article, as well as an empirical data set for illustrating an approach to objectify the interpretation of visualizations. We conclude that, when critically reflected, interpretable machine learning techniques may provide useful tools when describing complex psychological relationships. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.