Abstract

People with diabetes mellitus (DM) are at elevated risk of in-hospital mortality from coronavirus disease-2019 (COVID-19). This vulnerability has spurred efforts to pinpoint distinctive characteristics of COVID-19 patients with DM. In this context, the present article develops ML models equipped with interpretation modules for inpatient mortality risk assessments of COVID-19 patients with DM. To this end, a cohort of 156 hospitalised COVID-19 patients with pre-existing DM is studied. For creating risk assessment platforms, this work explores a pool of historical, on-admission, and during-admission data that are DM-related or, according to preliminary investigations, are exclusively attributed to the COVID-19 susceptibility of DM patients. First, a set of careful pre-modelling steps are executed on the clinical data, including cleaning, pre-processing, subdivision, and feature elimination. Subsequently, standard machine learning (ML) modelling analysis is performed on the cured data. Initially, a classifier is tasked with forecasting COVID-19 fatality from selected features. The model undergoes thorough evaluation analysis. The results achieved substantiate the efficacy of the undertaken data curation and modelling steps. Afterwards, SHapley Additive exPlanations (SHAP) technique is assigned to interpret the generated mortality risk prediction model by rating the predictors' global and local influence on the model's outputs. These interpretations advance the comprehensibility of the analysis by explaining the formation of outcomes and, in this way, foster the adoption of the proposed methodologies. Next, a clustering algorithm demarcates patients into four separate groups based on their SHAP values, providing a practical risk stratification method. Finally, a re-evaluation analysis is performed to verify the robustness of the proposed framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.