Abstract

Urinary tract infections are one of the most common bacterial infections worldwide; however, increasing antimicrobial resistance in bacterial pathogens is making it challenging for clinicians to correctly prescribe patients appropriate antibiotics. In this study, we present four interpretable machine learning-based decision support algorithms for predicting antimicrobial resistance. Using electronic health record data from a large cohort of patients diagnosed with potentially complicated UTIs, we demonstrate high predictability of antibiotic resistance across four antibiotics – nitrofurantoin, co-trimoxazole, ciprofloxacin, and levofloxacin. We additionally demonstrate the generalizability of our methods on a separate cohort of patients with uncomplicated UTIs, demonstrating that machine learning-driven approaches can help alleviate the potential of administering non-susceptible treatments, facilitate rapid effective clinical interventions, and enable personalized treatment suggestions. Additionally, these techniques present the benefit of providing model interpretability, explaining the basis for generated predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call