Abstract

Author(s): Elzouka, M; Yang, C; Albert, A; Prasher, RS; Lubner, SD | Abstract: Radiative particles are ubiquitous in nature and in various technologies. Calculating radiative properties from known geometry and designs can be computationally expensive, and trying to invert the problem to come up with designs specific to desired radiative properties is even more challenging. Here, we report a machine-learning (ML)-based method for both the forward and inverse problem for dielectric and metallic particles. Our decision-tree-based model is able to provide explicit design rules for inverse problems. Furthermore, we can use the same trained model for both the forward and the inverse problem, which greatly simplifies the computation. Our methodology shows the promise of augmenting optical design optimizations by providing interpretable and actionable design rules for rapidly finding approximate solutions for the inverse design problem. Inverse design is usually done by expensive, slow, iterative optimization. Elzouka et al. show how a simple machine-learning model (decision trees) can efficiently perform inverse design in one shot, while recovering design rules understandable by humans. Inverse design of the spectral emissivity of particles is used as an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.