Abstract

Background and ObjectiveWhole slide image (WSI) classification and lesion localization within giga-pixel slide are challenging tasks in computational pathology that requires context-aware representations of histological features to adequately infer nidus. The existing weakly supervised learning methods mainly treat different locations in the slide as independent regions and cannot learn potential nonlinear interactions between instances based on i.i.d assumption, resulting in the model unable to effectively utilize context-ware information to predict the labels of WSIs and locate the region of interest (ROI). MethodsHere, we propose an interpretable classification model named bidirectional Attention-based Multiple Instance Learning Graph Convolutional Network (ABMIL-GCN), which hierarchically aggregates context-aware features of instances into a global representation in a topology fashion to predict the slide labels and localize the region of lymph node metastasis in WSIs. ResultsWe verified the superiority of this method on the Camelyon16 dataset, and the results show that the average predicted ACC and AUC of the proposed model after flooding optimization can reach 90.89% and 0.9149, respectively. The average accuracy and ACC score are improved by more than 7% and 4% compared with the existing state-of-the-art algorithms. ConclusionsThe results demonstrate that context-aware GCN outperforms existing weakly supervised learning methods by introducing spatial correlations between the neighbor image patches, which also addresses the ‘accuracy-interpretability trade-off’ problem. The framework provides a novel paradigm for the clinical application of computer-aided diagnosis and intelligent systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.