Abstract

Bike-sharing systems (BSS) have emerged as an increasingly important form of transportation in smart cities, playing a pivotal role in the evolving landscape of urban mobility. As cities worldwide strive to promote sustainable and efficient transportation options, BSS offer a flexible, eco-friendly alternative that complements traditional public transport systems. These systems, however, are complex and influenced by a myriad of endogenous and exogenous factors. This complexity poses challenges in predicting BSS activity and optimizing its usage and effectiveness. This study delves into the dynamics of the BSS in Hamburg, Germany, focusing on system stability and activity prediction. We propose an interpretable attention-based Temporal Fusion Transformer (TFT) model and compare its performance with the state-of-the-art Long Short-Term Memory (LSTM) model. The proposed TFT model outperforms the LSTM model with a 36.8% improvement in RMSE and overcomes current black-box models via interpretability. Via detailed analysis, key factors influencing bike-sharing activity, especially in terms of temporal and spatial contexts, are identified, examined, and evaluated. Based on the results, we propose interventions and a deployed TFT model that can improve the effectiveness of BSS. This research contributes to the evolving field of sustainable urban mobility via data analysis for data-informed decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call