Abstract

AbstractThe miscibility or complexation of poly(styrene‐co‐acrylic acid) containing 27 mol % of acrylic acid (SAA‐27) and poly(styrene‐co‐N,N‐dimethylacrylamide) containing 17 or 32 mol % of N,N‐dimethylacrylamide (SAD‐17, SAD‐32) or poly(N,N‐dimethylacrylamide) (PDMA) were investigated by different techniques. The differential scanning calorimetry (DSC) analysis showed that a single glass‐transition temperature was observed for all the mixtures prepared from tetrahydrofuran (THF) or butan‐2‐one. This is an evidence of their miscibility or complexation over the entire composition range. As the content of the basic constituent increases as within SAA‐27/SAD‐32 and SAA‐27/PDMA, higher number of specific interpolymer interactins occurred and led to the formation of interpolymer complexes in butan‐2‐one. The qualitative Fourier transform infrared (FTIR) spectroscopy study carried out for SAA‐27/SAD‐17 blends revealed that hydrogen bonding occurred between the hydroxyl groups of SAA‐27 and the carbonyl amide of SAD‐17. Quantitative analysis carried out in the 160–210°C temperature range for the SAA‐27 copolymer and its blends of different ratios using the Painter–Coleman association model led to the estimation of the equilibrium constants K2, KA and the enthalpies of hydrogen bond formation. These blends are miscible even at 180°C as confirmed from the negative values of the total free energy of mixing ΔGM over the entire blend composition. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1011–1024, 2007

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.