Abstract
We develop here a computationally effective approach for producing high-quality $\mathcal{H}_\infty$-approximations to large scale linear dynamical systems having multiple inputs and multiple outputs (MIMO). We extend an approach for $\mathcal{H}_\infty$ model reduction introduced by Flagg, Beattie, and Gugercin for the single-input/single-output (SISO) setting, which combined ideas originating in interpolatory $\mathcal{H}_2$-optimal model reduction with complex Chebyshev approximation. Retaining this framework, our approach to the MIMO problem has its principal computational cost dominated by (sparse) linear solves, and so it can remain an effective strategy in many large-scale settings. We are able to avoid computationally demanding $\mathcal{H}_\infty$ norm calculations that are normally required to monitor progress within each optimization cycle through the use of "data-driven" rational approximations that are built upon previously computed function samples. Numerical examples are included that illustrate our approach. We produce high fidelity reduced models having consistently better $\mathcal{H}_\infty$ performance than models produced via balanced truncation; these models often are as good as (and occasionally better than) models produced using optimal Hankel norm approximation as well. In all cases considered, the method described here produces reduced models at far lower cost than is possible with either balanced truncation or optimal Hankel norm approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.