Abstract
We study Craig’s interpolation property in the extensions of Johansson’s minimal logic. We consider the Odintsov classification of J-logics according to their intuitionistic and negative companions which subdivides all logics into intervals. We prove that the lower endpoint of an interval has Craig interpolation property if and only if both its companions do so. We also establish the recognizability of the lower and upper endpoints which have Craig interpolation property, and find their semantic characterization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.