Abstract
Searching over a sorted list is a classical problem in computer science. Binary Search takes at most log2n+1 tries to find an item in a sorted list of size n. Interpolation Search achieves an average time complexity of O(loglogn) for uniformly distributed data. Hybrids of Binary Search and Interpolation Search are also available to handle data with unknown distributions. This paper analyzes the computation cost of these methods and shows that interpolation can significantly affect their performance—accordingly, a new method, Interpolation Once Binary Search (IOBS), is proposed. The experimental results show that IOBS outperforms the hybrids of Binary Search and Interpolation Search for nonuniformly distributed data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.