Abstract

Bivariate polynomials defined on the unit disk are used to reconstruct a wavefront from a data sample. We analyze the interpolation problem arising in critical sampling, that is, using a minimal sample. The interpolant is expressed as a linear combination of Zernike polynomials, whose coefficients represent relevant optical features of the wavefront. We study the propagation of errors of the polynomial values and their coefficients, obtaining bounds for the Lebesgue constants and condition numbers. A node distribution leading to low Lebesgue constants and condition numbers for degrees up to 20 is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.