Abstract
We propose unbalanced versions of the quantum mechanical version of optimal mass transport that is based on the Lindblad equation describing open quantum systems. One of them is a natural interpolation framework between matrices and matrix-valued measures via a quantum mechanical formulation of Fisher-Rao information and the matricial Wasserstein distance, and the second is an interpolation between Wasserstein distance and Frobenius norm. We also give analogous results for the matrix-valued density measures, i.e., we add a spatial dependency on the density matrices. This might extend the applications of the framework to interpolating matrix-valued densities/images with unequal masses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.