Abstract

We propose a method for the construction of preconditioners of parameter-dependent matrices for the solution of large systems of parameter-dependent equations. The proposed method is an interpolation of the matrix inverse based on a projection of the identity matrix with respect to the Frobenius norm. Approximations of the Frobenius norm using random matrices are introduced in order to handle large matrices. The resulting statistical estimators of the Frobenius norm yield quasi-optimal projections that are controlled with high probability. Strategies for the adaptive selection of interpolation points are then proposed for different objectives in the context of projection-based model order reduction methods: the improvement of residual-based error estimators, the improvement of the projection on a given reduced approximation space, or the recycling of computations for sampling based model order reduction methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.