Abstract

We consider an algebraic method for reconstruction of a harmonic function in the unit disk via a finite number of values of its Radon projections. The approach is to seek a harmonic polynomial which matches given values of Radon projections along some chords of the unit circle. We prove an analogue of the famous Marr's formula for computing the Radon projection of the basis orthogonal polynomials in our setting of harmonic polynomials. Using this result, we show unique solvability for a family of schemes where all chords are chosen at equal distance to the origin. For the special case of chords forming a regular convex polygon, we prove error estimates on the unit circle and in the unit disk. We present an efficient reconstruction algorithm which is robust with respect to noise in the input data and provide numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.