Abstract

I derive a posteriori error estimates for two-point boundary value problems and parabolic equations in one dimension based on interpolation error estimates. The interpolation error estimates are obtained from an extension of the error formula for the Lagrange interpolating polynomial in the case of symmetrically-spaced interpolation points. From this formula pointwise and \(H^1\) seminorm a priori estimates of the interpolation error are derived. The interpolant in conjunction with the a priori estimates is used to obtain asymptotically exact a posteriori error estimates of the interpolation error. These a posteriori error estimates are extended to linear two-point boundary problems and parabolic equations. Computational results demonstrate the convergence of a posteriori error estimates and their effectiveness when combined with an hp-adaptive code for solving parabolic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.