Abstract

Using a `local' integral representation of a matrix connection of order $n$ corresponding to an interpolation function of the same order, for each integer $n$, we can describe an injective map from the class of matrix connections of order $n$ to the class of positive $n$-monotone functions on $(0,\infty)$ and the range of this corresponding covers the class of interpolation functions of order $2n$. In particular, the space of symmetric connections is isomorphic to the space of symmetric positive $n$-monotone functions. Moreover, we show that, for each $n$, the class of $n$-connections extremely contains that of $(n+2)$-connections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.