Abstract
For complex interpolation nodes, we study the problem of interpolation by series of exponential functions whose exponents form a set, which is condensed at infinity in a certain direction. We obtain a criterion for all sets of nodes from a special class. For arbitrary sets of nodes, we obtain a necessary condition for the solvability of a more general problem of interpolation by functions that can be represented as Radon integrals of an exponential function over a set of exponents. The paper also contains well-known results on interpolation, which, in particular, allow studying the multipoint holomorphic Vallée Poussin problem for convolution operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.