Abstract

Transmit beamforming and receive combining are simple methods for exploiting spatial diversity in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system. Optimal beamforming requires channel state information in the form of the beamforming vectors for each OFDM subcarrier. This paper proposes a limited feedback architecture that combines beamforming vector quantization and smart vector interpolation. In the proposed system, the receiver sends a fraction of information about the optimal beamforming vectors to the transmitter and the transmitter computes the beamforming vectors for all subcarriers through interpolation. A new spherical interpolator is developed that exploits parameters for phase rotation to satisfy the phase invariance and unit norm properties of the transmitted beamforming vectors. The beamforming vectors and phase parameters are quantized at the receiver and the quantized information is provided to the transmitter. The proposed quantization system provides only a moderate increase in complexity versus over comparable approaches. Numerical simulations show that the proposed scheme performs better than existing diversity techniques with the same feedback data rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.