Abstract
The recurrence plot and the recurrence quantification analysis (RQA) are well-established methods for the analysis of data from complex systems. They provide important insights into the nature of the dynamics, periodicity, regime changes, and many more. These methods are used in different fields of research, such as finance, engineering, life, and earth science. To use them, the data have usually to be uniformly sampled, posing difficulties in investigations that provide non-uniformly sampled data, as typical in medical data (e.g., heart-beat based measurements), paleoclimate archives (such as sediment cores or stalagmites), or astrophysics (supernova or pulsar observations). One frequently used solution is interpolation to generate uniform time series. However, this preprocessing step can introduce bias to the RQA measures, particularly those that rely on the diagonal or vertical line structure in the recurrence plot. Using prototypical model systems, we systematically analyze differences in the RQA measure average diagonal line length for data with different sampling and interpolation. For real data, we show that the course of this measure strongly depends on the choice of the sampling rate for interpolation. Furthermore, we suggest a correction scheme, which is capable of correcting the bias introduced by the prepossessing step if the interpolation ratio is an integer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.