Abstract
An implementation of the Orthogonal Matching Pursuit (OMP) algorithm was used and the results obtained therefrom are presented for simultaneous interpolation and denoising from seismic signals in the framework of sparse signal representation. OMP is an algorithm for sparse signal representation based on orthogonal projections underlying the signal over an over-complete dictionary. This over-complete dictionary was designed using K-times Singular Values Decomposition (K-SVD). In each iteration, OMP calculates a new signal approximation and the approximation error is used in the next iteration to determine the new element. The new element corresponds to the largest magnitude of the inner products between the current residual and the original elements in the dictionary. The implemented algorithm was applied to VSP seismic data and refraction seismic data; results for the application in restored missing traces and denoise signals are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.