Abstract
The idea that a system obeying interpolating statistics can be described by a deformed oscillator algebra, or quantum groups, has been an outstanding issue. We are able to demonstrate that a q-deformed oscillator algebra can be used to describe the statistics of particles which provide a continuous interpolation between Bose and Fermi statistics. We show that the generalized intermediate statistics splits into Boson-like and Fermion-like regimes, each described by a unique oscillator algebra. The thermostatistics of Boson-like particles is described by employing q-calculus based on the Jackson derivative while the Fermion-like particles are described by ordinary derivatives of thermodynamics. Thermodynamic functions for systems of both types are determined and examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.