Abstract

In many meshfree methods, moving least squares scheme (MLS) has been used to generate meshfree shape functions. Imposition of Dirichlet boundary conditions is difficult task in these methods as the MLS approximation is devoid of Kronecker delta property. A new variant of the MLS approximation scheme, namely interpolating moving least squares scheme, possesses Kronecker delta property. In the current work, a novel interpolating meshless local Petrov-Galerkin (IMLPG) method has been developed based on the interpolating MLS approximation for two and three dimensional steady state heat conduction in regular and complex domain. The interpolating MLPG method shows two advantages over standard meshless local Petrov-Galerkin (MLPG) method i.e. higher computational efficiency and ease to impose EBCs at similar accuracy level. Performance of three different test functions in-conjunction with interpolating MLPG method has been shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.