Abstract

We develop heuristic interpolation methods for the functions $t \mapsto \log \det \left( \mathbf{A} + t \mathbf{B} \right)$ and $t \mapsto \operatorname{trace}\left( (\mathbf{A} + t \mathbf{B})^{p} \right)$ where the matrices $\mathbf{A}$ and $\mathbf{B}$ are Hermitian and positive (semi) definite and $p$ and $t$ are real variables. These functions are featured in many applications in statistics, machine learning, and computational physics. The presented interpolation functions are based on the modification of sharp bounds for these functions. We demonstrate the accuracy and performance of the proposed method with numerical examples, namely, the marginal maximum likelihood estimation for Gaussian process regression and the estimation of the regularization parameter of ridge regression with the generalized cross-validation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.