Abstract

Success in developing remote-sensing methods is largely based on adequate modeling of target-particle shapes. In various terrestrial and cosmic applications, submicrometer- and micrometer-sized dust particles appear to have a highly irregular morphology. Light scattering by such irregularly shaped particles can be computed only with a numerical technique that, in practice, is a time-consuming approach, demanding significant computational resources. In this Letter, we discuss an efficient way to accelerate light-scattering computations through interpolation of the numerical results obtained at different levels of material absorption. We find a nonlinear dependence of reflectance, degree of linear polarization, and linear and circular polarization ratios on the imaginary part of refractive index Im(m). Over the range of ΔIm(m)=0.05, the dependence can be satisfactorily described with a cubic polynomial function, whose determination requires exact computations at four different values of Im(m). The light-scattering characteristics at other intermediate values of Im(m) can be inferred with great accuracy via interpolation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.